On the Loading of Slime Mold Physarum polycephalum with Microparticles for Unconventional Computing Application

نویسندگان

  • Angelica Cifarelli
  • Alice Dimonte
  • Tatiana Berzina
  • Victor Erokhin
چکیده

The plasmodium of Physarum polycephalum is a large single cell visible with the naked eye. The plasmodium realizes a pattern of protoplasmic veins which span sites of sources of nutrients, producing efficient network structures like cycles and Steiner minimum trees. Besides, the plasmodium can embed different chemicals; therefore, it should be possible to program the plasmodium to realize deterministic adaptive network and spatial distribution of nanoscale and microscale materials. The transported particles can be used for the modification of the physical properties of the system (electrical, optical, magnetic) facilitating the readout of the information, processed by the slime mold. Experiments with polystyrene microparticles and MnCO3 microparticles demonstrate that the plasmodium of Physarum can propagate nanoscale objects using a number of distinct mechanisms. The results of our experiments could be employed in the field of the unconventional computing and bio-computing application devices, using Physarum network as scaffolds for the development of hybrid nanocircuits and microcircuits and devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing the Intelligence of Physarum Polycephalum for Unconventional Computing-Aided Musical Composition

This paper introduces Die Lebensfreude, a pioneering piece of music composed with the aid of an amoeba-like plasmodial slime mould called Physarum polycephalum. The composition is for an ensemble of five instruments (flute, clarinet, violin, cello and piano) and six channels of electronically synthesises sounds. The instrumental part and the synthesised sounds are musifications and sonification...

متن کامل

A Malleable Metaphor: Physarum polycephalum as artistic and educational medium

The slime mold Physarum polycephalum is a well-established model organism within fields of biology, physics and computing. It is also increasingly employed within art and design disciplines, pedagogic practices and public engagement activities as a vehicle for exploring questions of intelligence, agency and emergence. This work was presented at PhysNet 2015.

متن کامل

Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited pos...

متن کامل

Thirty eight things to do with live slime mould

Slime mould Physarum polycephalum is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralised actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices. In the last decade the Physarum became a swiss...

متن کامل

Unconventional Computing for Music: Sound Synthesis with Slime Mould

This paper reports on the recent outcomes from our research into Unconventional Computing for sound and music using slime mould of Physarum polycephalum. This slime mould is a huge single cell with thousands of nuclei, which behaves like a giant amoeba. During its foraging behaviour it produces electrical activity corresponding to different physiological states. We developed a method to render ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014